/* ********************************************************************** * Copyright (C) 2007, International Business Machines * Corporation and others. All Rights Reserved. ********************************************************************** * file name: bitset.cpp * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2007jan15 * created by: Markus Scherer * * Idea for a "compiled", fast, read-only (immutable) version of a UnicodeSet * using a folded bit set consisting of a 1k-entry index table and a * compacted array of 64-bit words. * Uses a simple hash table for compaction. * Uses the original set for supplementary code points. */ #include "unicode/utypes.h" #include "unicont.h" /* * Hash table for up to 1k 64-bit words, for 1 bit per BMP code point. * Hashes 64-bit words and maps them to 16-bit integers which are * assigned in order of new incoming words for subsequent storage * in a contiguous array. */ struct BMPBitHash : public UObject { int64_t keys[0x800]; // 2k uint16_t values[0x800]; uint16_t reverse[0x400]; uint16_t count; const int32_t prime=1301; // Less than 2k. BMPBitHash() : count(0) { // Fill values[] with 0xffff. uprv_memset(values, 0xff, sizeof(values)); } /* * Map a key to an integer count. * Map at most 1k=0x400 different keys with this data structure. */ uint16_t map(int64_t key) { int32_t hash=(int32_t)(key>>55)&0x1ff; hash^=(int32_t)(key>>44)&0x7ff; hash^=(int32_t)(key>>33)&0x7ff; hash^=(int32_t)(key>>22)&0x7ff; hash^=(int32_t)(key>>11)&0x7ff; hash^=(int32_t)key&0x7ff; for(;;) { if(values[hash]==0xffff) { // Unused slot. keys[hash]=key; reverse[count]=hash; return values[hash]=count++; } else if(keys[hash]==key) { // Found a slot with this key. return values[hash]; } else { // Used slot with a different key, move to another slot. hash=(hash+prime)&0x7ff; } } } uint16_t countKeys() const { return count; } /* * Invert the hash map: Fill an array of length countKeys() with the keys * indexed by their mapped values. */ void invert(int64_t *k) const { uint16_t i; for(i=0; i>6; if(prevIndex!=i) { // Finish the end of the previous range. if(prevIndex<0) { prevIndex=0; } else { index[prevIndex++]=bitHash->map(b); } // Fill all-zero entries between ranges. if(prevIndexmap(0); do { index[prevIndex++]=zero; } while(prevIndex0xffff) { break; } b|=~((INT64_C(1)<<(start&0x3f))-1); j=end>>6; if(imap(b); // Fill all-one entries inside the range. if(imap(INT64_C(0xffffffffffffffff)); do { index[i++]=all; } while(icountKeys()>LENGTHOF(shortBits)) { bits=(int64_t *)uprv_malloc(bitHash->countKeys()*8); } if(bits!=NULL) { bitHash->invert(bits); } else { bits=shortBits; errorCode=U_MEMORY_ALLOCATION_ERROR; return; } latin1Set[0]=(uint32_t)bits[0]; latin1Set[1]=(uint32_t)(bits[0]>>32); latin1Set[2]=(uint32_t)bits[1]; latin1Set[3]=(uint32_t)(bits[1]>>32); latin1Set[4]=(uint32_t)bits[2]; latin1Set[5]=(uint32_t)(bits[2]>>32); latin1Set[6]=(uint32_t)bits[3]; latin1Set[7]=(uint32_t)(bits[3]>>32); restSet.remove(0, 0xffff); } ~BitSet() { if(bits!=shortBits) { uprv_free(bits); } delete restSet; } UBool contains(UChar32 c) const { if((uint32_t)c<=0xff) { return (UBool)((latin1Set[c>>5]&((uint32_t)1<<(c&0x1f)))!=0); } else if((uint32_t)c<0xffff) { return (UBool)((bits[c>>6]&(INT64_C(1)<<(c&0x3f)))!=0); } else { return restSet->contains(c); } } private: uint16_t index[0x400]; int64_t shortBits[32]; int64_t *bits; uint32_t latin1Bits[8]; UnicodeSet *restSet; };