/* ********************************************************************** * Copyright (C) 1999-2008, International Business Machines * Corporation and others. All Rights Reserved. ********************************************************************** * Date Name Description * 11/17/99 aliu Creation. ********************************************************************** */ #include "unicode/utypes.h" #if !UCONFIG_NO_TRANSLITERATION #include "unicode/unifilt.h" #include "unicode/uniset.h" #include "cpdtrans.h" #include "uvector.h" #include "tridpars.h" #include "cmemory.h" // keep in sync with Transliterator //static const UChar ID_SEP = 0x002D; /*-*/ static const UChar ID_DELIM = 0x003B; /*;*/ static const UChar NEWLINE = 10; // Empty string static const UChar EMPTY[] = {0}; //"" static const UChar COLON_COLON[] = {0x3A, 0x3A, 0}; //"::" U_NAMESPACE_BEGIN const UChar CompoundTransliterator::PASS_STRING[] = { 0x0025, 0x0050, 0x0061, 0x0073, 0x0073, 0 }; // "%Pass" UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CompoundTransliterator) /** * Constructs a new compound transliterator given an array of * transliterators. The array of transliterators may be of any * length, including zero or one, however, useful compound * transliterators have at least two components. * @param transliterators array of Transliterator * objects * @param transliteratorCount The number of * Transliterator objects in transliterators. * @param filter the filter. Any character for which * filter.contains() returns false will not be * altered by this transliterator. If filter is * null then no filtering is applied. */ CompoundTransliterator::CompoundTransliterator( Transliterator* const transliterators[], int32_t transliteratorCount, UnicodeFilter* adoptedFilter) : Transliterator(joinIDs(transliterators, transliteratorCount), adoptedFilter), trans(0), count(0), numAnonymousRBTs(0) { setTransliterators(transliterators, transliteratorCount); } /** * Splits an ID of the form "ID;ID;..." into a compound using each * of the IDs. * @param id of above form * @param forward if false, does the list in reverse order, and * takes the inverse of each ID. */ CompoundTransliterator::CompoundTransliterator(const UnicodeString& id, UTransDirection direction, UnicodeFilter* adoptedFilter, UParseError& /*parseError*/, UErrorCode& status) : Transliterator(id, adoptedFilter), trans(0), numAnonymousRBTs(0) { // TODO add code for parseError...currently unused, but // later may be used by parsing code... init(id, direction, TRUE, status); } CompoundTransliterator::CompoundTransliterator(const UnicodeString& id, UParseError& /*parseError*/, UErrorCode& status) : Transliterator(id, 0), // set filter to 0 here! trans(0), numAnonymousRBTs(0) { // TODO add code for parseError...currently unused, but // later may be used by parsing code... init(id, UTRANS_FORWARD, TRUE, status); } /** * Private constructor for use of TransliteratorAlias */ CompoundTransliterator::CompoundTransliterator(const UnicodeString& newID, UVector& list, UnicodeFilter* adoptedFilter, int32_t anonymousRBTs, UParseError& /*parseError*/, UErrorCode& status) : Transliterator(newID, adoptedFilter), trans(0), numAnonymousRBTs(anonymousRBTs) { init(list, UTRANS_FORWARD, FALSE, status); } /** * Private constructor for Transliterator from a vector of * transliterators. The caller is responsible for fixing up the * ID. */ CompoundTransliterator::CompoundTransliterator(UVector& list, UParseError& /*parseError*/, UErrorCode& status) : Transliterator(EMPTY, NULL), trans(0), numAnonymousRBTs(0) { // TODO add code for parseError...currently unused, but // later may be used by parsing code... init(list, UTRANS_FORWARD, FALSE, status); // assume caller will fixup ID } CompoundTransliterator::CompoundTransliterator(UVector& list, int32_t anonymousRBTs, UParseError& /*parseError*/, UErrorCode& status) : Transliterator(EMPTY, NULL), trans(0), numAnonymousRBTs(anonymousRBTs) { init(list, UTRANS_FORWARD, FALSE, status); } /** * Finish constructing a transliterator: only to be called by * constructors. Before calling init(), set trans and filter to NULL. * @param id the id containing ';'-separated entries * @param direction either FORWARD or REVERSE * @param idSplitPoint the index into id at which the * adoptedSplitTransliterator should be inserted, if there is one, or * -1 if there is none. * @param adoptedSplitTransliterator a transliterator to be inserted * before the entry at offset idSplitPoint in the id string. May be * NULL to insert no entry. * @param fixReverseID if TRUE, then reconstruct the ID of reverse * entries by calling getID() of component entries. Some constructors * do not require this because they apply a facade ID anyway. * @param status the error code indicating success or failure */ void CompoundTransliterator::init(const UnicodeString& id, UTransDirection direction, UBool fixReverseID, UErrorCode& status) { // assert(trans == 0); if (U_FAILURE(status)) { return; } UVector list(status); UnicodeSet* compoundFilter = NULL; UnicodeString regenID; if (!TransliteratorIDParser::parseCompoundID(id, direction, regenID, list, compoundFilter)) { status = U_INVALID_ID; delete compoundFilter; return; } TransliteratorIDParser::instantiateList(list, status); init(list, direction, fixReverseID, status); if (compoundFilter != NULL) { adoptFilter(compoundFilter); } } /** * Finish constructing a transliterator: only to be called by * constructors. Before calling init(), set trans and filter to NULL. * @param list a vector of transliterator objects to be adopted. It * should NOT be empty. The list should be in declared order. That * is, it should be in the FORWARD order; if direction is REVERSE then * the list order will be reversed. * @param direction either FORWARD or REVERSE * @param fixReverseID if TRUE, then reconstruct the ID of reverse * entries by calling getID() of component entries. Some constructors * do not require this because they apply a facade ID anyway. * @param status the error code indicating success or failure */ void CompoundTransliterator::init(UVector& list, UTransDirection direction, UBool fixReverseID, UErrorCode& status) { // assert(trans == 0); // Allocate array if (U_SUCCESS(status)) { count = list.size(); trans = (Transliterator **)uprv_malloc(count * sizeof(Transliterator *)); /* test for NULL */ if (trans == 0) { status = U_MEMORY_ALLOCATION_ERROR; return; } } if (U_FAILURE(status) || trans == 0) { // assert(trans == 0); return; } // Move the transliterators from the vector into an array. // Reverse the order if necessary. int32_t i; for (i=0; i 0) { newID.append(ID_DELIM); } newID.append(trans[i]->getID()); } setID(newID); } computeMaximumContextLength(); } /** * Return the IDs of the given list of transliterators, concatenated * with ID_DELIM delimiting them. Equivalent to the perlish expression * join(ID_DELIM, map($_.getID(), transliterators). */ UnicodeString CompoundTransliterator::joinIDs(Transliterator* const transliterators[], int32_t transCount) { UnicodeString id; for (int32_t i=0; i 0) { id.append(ID_DELIM); } id.append(transliterators[i]->getID()); } return id; // Return temporary } /** * Copy constructor. */ CompoundTransliterator::CompoundTransliterator(const CompoundTransliterator& t) : Transliterator(t), trans(0), count(0), numAnonymousRBTs(-1) { *this = t; } /** * Destructor */ CompoundTransliterator::~CompoundTransliterator() { freeTransliterators(); } void CompoundTransliterator::freeTransliterators(void) { if (trans != 0) { for (int32_t i=0; i count) { if (trans != NULL) { uprv_free(trans); } trans = (Transliterator **)uprv_malloc(t.count * sizeof(Transliterator *)); } count = t.count; if (trans != NULL) { for (i=0; iclone(); if (trans[i] == NULL) { failed = TRUE; break; } } } // if memory allocation failed delete backwards trans array if (failed && i > 0) { int32_t n; for (n = i-1; n >= 0; n--) { uprv_free(trans[n]); trans[n] = NULL; } } numAnonymousRBTs = t.numAnonymousRBTs; return *this; } /** * Transliterator API. */ Transliterator* CompoundTransliterator::clone(void) const { return new CompoundTransliterator(*this); } /** * Returns the number of transliterators in this chain. * @return number of transliterators in this chain. */ int32_t CompoundTransliterator::getCount(void) const { return count; } /** * Returns the transliterator at the given index in this chain. * @param index index into chain, from 0 to getCount() - 1 * @return transliterator at the given index */ const Transliterator& CompoundTransliterator::getTransliterator(int32_t index) const { return *trans[index]; } void CompoundTransliterator::setTransliterators(Transliterator* const transliterators[], int32_t transCount) { Transliterator** a = (Transliterator **)uprv_malloc(transCount * sizeof(Transliterator *)); if (a == NULL) { return; } int32_t i = 0; UBool failed = FALSE; for (i=0; iclone(); if (a[i] == NULL) { failed = TRUE; break; } } if (failed && i > 0) { int32_t n; for (n = i-1; n >= 0; n--) { uprv_free(a[n]); a[n] = NULL; } return; } adoptTransliterators(a, transCount); } void CompoundTransliterator::adoptTransliterators(Transliterator* adoptedTransliterators[], int32_t transCount) { // First free trans[] and set count to zero. Once this is done, // orphan the filter. Set up the new trans[]. freeTransliterators(); trans = adoptedTransliterators; count = transCount; computeMaximumContextLength(); setID(joinIDs(trans, count)); } /** * Append c to buf, unless buf is empty or buf already ends in c. */ static void _smartAppend(UnicodeString& buf, UChar c) { if (buf.length() != 0 && buf.charAt(buf.length() - 1) != c) { buf.append(c); } } UnicodeString& CompoundTransliterator::toRules(UnicodeString& rulesSource, UBool escapeUnprintable) const { // We do NOT call toRules() on our component transliterators, in // general. If we have several rule-based transliterators, this // yields a concatenation of the rules -- not what we want. We do // handle compound RBT transliterators specially -- those for which // compoundRBTIndex >= 0. For the transliterator at compoundRBTIndex, // we do call toRules() recursively. rulesSource.truncate(0); if (numAnonymousRBTs >= 1 && getFilter() != NULL) { // If we are a compound RBT and if we have a global // filter, then emit it at the top. UnicodeString pat; rulesSource.append(COLON_COLON).append(getFilter()->toPattern(pat, escapeUnprintable)).append(ID_DELIM); } for (int32_t i=0; igetID().startsWith(PASS_STRING)) { trans[i]->toRules(rule, escapeUnprintable); if (numAnonymousRBTs > 1 && i > 0 && trans[i - 1]->getID().startsWith(PASS_STRING)) rule = UNICODE_STRING_SIMPLE("::Null;") + rule; // we also use toRules() on CompoundTransliterators (which we // check for by looking for a semicolon in the ID)-- this gets // the list of their child transliterators output in the right // format } else if (trans[i]->getID().indexOf(ID_DELIM) >= 0) { trans[i]->toRules(rule, escapeUnprintable); // for everything else, use Transliterator::toRules() } else { trans[i]->Transliterator::toRules(rule, escapeUnprintable); } _smartAppend(rulesSource, NEWLINE); rulesSource.append(rule); _smartAppend(rulesSource, ID_DELIM); } return rulesSource; } /** * Implement Transliterator framework */ void CompoundTransliterator::handleGetSourceSet(UnicodeSet& result) const { UnicodeSet set; result.clear(); for (int32_t i=0; igetSourceSet(set)); // Take the example of Hiragana-Latin. This is really // Hiragana-Katakana; Katakana-Latin. The source set of // these two is roughly [:Hiragana:] and [:Katakana:]. // But the source set for the entire transliterator is // actually [:Hiragana:] ONLY -- that is, the first // non-empty source set. // This is a heuristic, and not 100% reliable. if (!result.isEmpty()) { break; } } } /** * Override Transliterator framework */ UnicodeSet& CompoundTransliterator::getTargetSet(UnicodeSet& result) const { UnicodeSet set; result.clear(); for (int32_t i=0; igetTargetSet(set)); } return result; } /** * Implements {@link Transliterator#handleTransliterate}. */ void CompoundTransliterator::handleTransliterate(Replaceable& text, UTransPosition& index, UBool incremental) const { /* Call each transliterator with the same contextStart and * start, but with the limit as modified * by preceding transliterators. The start index must be * reset for each transliterator to give each a chance to * transliterate the text. The initial contextStart index is known * to still point to the same place after each transliterator * is called because each transliterator will not change the * text between contextStart and the initial start index. * * IMPORTANT: After the first transliterator, each subsequent * transliterator only gets to transliterate text committed by * preceding transliterators; that is, the start (output * value) of transliterator i becomes the limit (input value) * of transliterator i+1. Finally, the overall limit is fixed * up before we return. * * Assumptions we make here: * (1) contextStart <= start <= limit <= contextLimit <= text.length() * (2) start <= start' <= limit' ;cursor doesn't move back * (3) start <= limit' ;text before cursor unchanged * - start' is the value of start after calling handleKT * - limit' is the value of limit after calling handleKT */ /** * Example: 3 transliterators. This example illustrates the * mechanics we need to implement. C, S, and L are the contextStart, * start, and limit. gl is the globalLimit. contextLimit is * equal to limit throughout. * * 1. h-u, changes hex to Unicode * * 4 7 a d 0 4 7 a * abc/u0061/u => abca/u * C S L C S L gl=f->a * * 2. upup, changes "x" to "XX" * * 4 7 a 4 7 a * abca/u => abcAA/u * C SL C S * L gl=a->b * 3. u-h, changes Unicode to hex * * 4 7 a 4 7 a d 0 3 * abcAA/u => abc/u0041/u0041/u * C S L C S * L gl=b->15 * 4. return * * 4 7 a d 0 3 * abc/u0041/u0041/u * C S L */ if (count < 1) { index.start = index.limit; return; // Short circuit for empty compound transliterators } // compoundLimit is the limit value for the entire compound // operation. We overwrite index.limit with the previous // index.start. After each transliteration, we update // compoundLimit for insertions or deletions that have happened. int32_t compoundLimit = index.limit; // compoundStart is the start for the entire compound // operation. int32_t compoundStart = index.start; int32_t delta = 0; // delta in length // Give each transliterator a crack at the run of characters. // See comments at the top of the method for more detail. for (int32_t i=0; ifilteredTransliterate(text, index, incremental); // In a properly written transliterator, start == limit after // handleTransliterate() returns when incremental is false. // Catch cases where the subclass doesn't do this, and throw // an exception. (Just pinning start to limit is a bad idea, // because what's probably happening is that the subclass // isn't transliterating all the way to the end, and it should // in non-incremental mode.) if (!incremental && index.start != index.limit) { // We can't throw an exception, so just fudge things index.start = index.limit; } // Cumulative delta for insertions/deletions delta += index.limit - limit; if (incremental) { // In the incremental case, only allow subsequent // transliterators to modify what has already been // completely processed by prior transliterators. In the // non-incrmental case, allow each transliterator to // process the entire text. index.limit = index.start; } } compoundLimit += delta; // Start is good where it is -- where the last transliterator left // it. Limit needs to be put back where it was, modulo // adjustments for deletions/insertions. index.limit = compoundLimit; } /** * Sets the length of the longest context required by this transliterator. * This is preceding context. */ void CompoundTransliterator::computeMaximumContextLength(void) { int32_t max = 0; for (int32_t i=0; igetMaximumContextLength(); if (len > max) { max = len; } } setMaximumContextLength(max); } U_NAMESPACE_END #endif /* #if !UCONFIG_NO_TRANSLITERATION */ /* eof */