/* ******************************************************************************* * * Copyright (C) 2003-2010, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: ucol_swp.c * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2003sep10 * created by: Markus W. Scherer * * Swap collation binaries. */ #include "unicode/udata.h" /* UDataInfo */ #include "utrie.h" #include "udataswp.h" #include "cmemory.h" #include "ucol_imp.h" #include "ucol_swp.h" /* swapping ----------------------------------------------------------------- */ /* * This performs data swapping for a folded trie (see utrie.c for details). */ U_CAPI int32_t U_EXPORT2 utrie_swap(const UDataSwapper *ds, const void *inData, int32_t length, void *outData, UErrorCode *pErrorCode) { const UTrieHeader *inTrie; UTrieHeader trie; int32_t size; UBool dataIs32; if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { return 0; } if(ds==NULL || inData==NULL || (length>=0 && outData==NULL)) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } /* setup and swapping */ if(length>=0 && (uint32_t)lengthreadUInt32(inTrie->signature); trie.options=ds->readUInt32(inTrie->options); trie.indexLength=udata_readInt32(ds, inTrie->indexLength); trie.dataLength=udata_readInt32(ds, inTrie->dataLength); if( trie.signature!=0x54726965 || (trie.options&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_SHIFT || ((trie.options>>UTRIE_OPTIONS_INDEX_SHIFT)&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_INDEX_SHIFT || trie.indexLength=0) { UTrieHeader *outTrie; if(lengthswapArray32(ds, inTrie, sizeof(UTrieHeader), outTrie, pErrorCode); /* swap the index and the data */ if(dataIs32) { ds->swapArray16(ds, inTrie+1, trie.indexLength*2, outTrie+1, pErrorCode); ds->swapArray32(ds, (const uint16_t *)(inTrie+1)+trie.indexLength, trie.dataLength*4, (uint16_t *)(outTrie+1)+trie.indexLength, pErrorCode); } else { ds->swapArray16(ds, inTrie+1, (trie.indexLength+trie.dataLength)*2, outTrie+1, pErrorCode); } } return size; } #if !UCONFIG_NO_COLLATION /* Modified copy of the beginning of ucol_swapBinary(). */ U_CAPI UBool U_EXPORT2 ucol_looksLikeCollationBinary(const UDataSwapper *ds, const void *inData, int32_t length) { const uint8_t *inBytes; const UCATableHeader *inHeader; UCATableHeader header; if(ds==NULL || inData==NULL || length<-1) { return FALSE; } inBytes=(const uint8_t *)inData; inHeader=(const UCATableHeader *)inData; /* * The collation binary must contain at least the UCATableHeader, * starting with its size field. * sizeof(UCATableHeader)==42*4 in ICU 2.8 * check the length against the header size before reading the size field */ uprv_memset(&header, 0, sizeof(header)); if(length<0) { header.size=udata_readInt32(ds, inHeader->size); } else if((length<(42*4) || length<(header.size=udata_readInt32(ds, inHeader->size)))) { return FALSE; } header.magic=ds->readUInt32(inHeader->magic); if(!( header.magic==UCOL_HEADER_MAGIC && inHeader->formatVersion[0]==3 /*&& inHeader->formatVersion[1]>=0*/ )) { return FALSE; } if(inHeader->isBigEndian!=ds->inIsBigEndian || inHeader->charSetFamily!=ds->inCharset) { return FALSE; } return TRUE; } /* swap a header-less collation binary, inside a resource bundle or ucadata.icu */ U_CAPI int32_t U_EXPORT2 ucol_swapBinary(const UDataSwapper *ds, const void *inData, int32_t length, void *outData, UErrorCode *pErrorCode) { const uint8_t *inBytes; uint8_t *outBytes; const UCATableHeader *inHeader; UCATableHeader *outHeader; UCATableHeader header; uint32_t count; /* argument checking in case we were not called from ucol_swap() */ if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { return 0; } if(ds==NULL || inData==NULL || length<-1 || (length>0 && outData==NULL)) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } inBytes=(const uint8_t *)inData; outBytes=(uint8_t *)outData; inHeader=(const UCATableHeader *)inData; outHeader=(UCATableHeader *)outData; /* * The collation binary must contain at least the UCATableHeader, * starting with its size field. * sizeof(UCATableHeader)==42*4 in ICU 2.8 * check the length against the header size before reading the size field */ uprv_memset(&header, 0, sizeof(header)); if(length<0) { header.size=udata_readInt32(ds, inHeader->size); } else if((length<(42*4) || length<(header.size=udata_readInt32(ds, inHeader->size)))) { udata_printError(ds, "ucol_swapBinary(): too few bytes (%d after header) for collation data\n", length); *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; return 0; } header.magic=ds->readUInt32(inHeader->magic); if(!( header.magic==UCOL_HEADER_MAGIC && inHeader->formatVersion[0]==3 /*&& inHeader->formatVersion[1]>=0*/ )) { udata_printError(ds, "ucol_swapBinary(): magic 0x%08x or format version %02x.%02x is not a collation binary\n", header.magic, inHeader->formatVersion[0], inHeader->formatVersion[1]); *pErrorCode=U_UNSUPPORTED_ERROR; return 0; } if(inHeader->isBigEndian!=ds->inIsBigEndian || inHeader->charSetFamily!=ds->inCharset) { udata_printError(ds, "ucol_swapBinary(): endianness %d or charset %d does not match the swapper\n", inHeader->isBigEndian, inHeader->charSetFamily); *pErrorCode=U_INVALID_FORMAT_ERROR; return 0; } if(length>=0) { /* copy everything, takes care of data that needs no swapping */ if(inBytes!=outBytes) { uprv_memcpy(outBytes, inBytes, header.size); } /* swap the necessary pieces in the order of their occurrence in the data */ /* read more of the UCATableHeader (the size field was read above) */ header.options= ds->readUInt32(inHeader->options); header.UCAConsts= ds->readUInt32(inHeader->UCAConsts); header.contractionUCACombos= ds->readUInt32(inHeader->contractionUCACombos); header.mappingPosition= ds->readUInt32(inHeader->mappingPosition); header.expansion= ds->readUInt32(inHeader->expansion); header.contractionIndex= ds->readUInt32(inHeader->contractionIndex); header.contractionCEs= ds->readUInt32(inHeader->contractionCEs); header.contractionSize= ds->readUInt32(inHeader->contractionSize); header.endExpansionCE= ds->readUInt32(inHeader->endExpansionCE); header.expansionCESize= ds->readUInt32(inHeader->expansionCESize); header.endExpansionCECount= udata_readInt32(ds, inHeader->endExpansionCECount); header.contractionUCACombosSize=udata_readInt32(ds, inHeader->contractionUCACombosSize); header.scriptToLeadByte= ds->readUInt32(inHeader->scriptToLeadByte); header.leadByteToScript= ds->readUInt32(inHeader->leadByteToScript); /* swap the 32-bit integers in the header */ ds->swapArray32(ds, inHeader, (int32_t)((const char *)&inHeader->jamoSpecial-(const char *)inHeader), outHeader, pErrorCode); ds->swapArray32(ds, &(inHeader->scriptToLeadByte), sizeof(header.scriptToLeadByte) + sizeof(header.leadByteToScript), &(outHeader->scriptToLeadByte), pErrorCode); /* set the output platform properties */ outHeader->isBigEndian=ds->outIsBigEndian; outHeader->charSetFamily=ds->outCharset; /* swap the options */ if(header.options!=0) { ds->swapArray32(ds, inBytes+header.options, header.expansion-header.options, outBytes+header.options, pErrorCode); } /* swap the expansions */ if(header.mappingPosition!=0 && header.expansion!=0) { if(header.contractionIndex!=0) { /* expansions bounded by contractions */ count=header.contractionIndex-header.expansion; } else { /* no contractions: expansions bounded by the main trie */ count=header.mappingPosition-header.expansion; } ds->swapArray32(ds, inBytes+header.expansion, (int32_t)count, outBytes+header.expansion, pErrorCode); } /* swap the contractions */ if(header.contractionSize!=0) { /* contractionIndex: UChar[] */ ds->swapArray16(ds, inBytes+header.contractionIndex, header.contractionSize*2, outBytes+header.contractionIndex, pErrorCode); /* contractionCEs: CEs[] */ ds->swapArray32(ds, inBytes+header.contractionCEs, header.contractionSize*4, outBytes+header.contractionCEs, pErrorCode); } /* swap the main trie */ if(header.mappingPosition!=0) { count=header.endExpansionCE-header.mappingPosition; utrie_swap(ds, inBytes+header.mappingPosition, (int32_t)count, outBytes+header.mappingPosition, pErrorCode); } /* swap the max expansion table */ if(header.endExpansionCECount!=0) { ds->swapArray32(ds, inBytes+header.endExpansionCE, header.endExpansionCECount*4, outBytes+header.endExpansionCE, pErrorCode); } /* expansionCESize, unsafeCP, contrEndCP: uint8_t[], no need to swap */ /* swap UCA constants */ if(header.UCAConsts!=0) { /* * if UCAConsts!=0 then contractionUCACombos because we are swapping * the UCA data file, and we know that the UCA contains contractions */ count=header.contractionUCACombos-header.UCAConsts; ds->swapArray32(ds, inBytes+header.UCAConsts, header.contractionUCACombos-header.UCAConsts, outBytes+header.UCAConsts, pErrorCode); } /* swap UCA contractions */ if(header.contractionUCACombosSize!=0) { count=header.contractionUCACombosSize*inHeader->contractionUCACombosWidth*U_SIZEOF_UCHAR; ds->swapArray16(ds, inBytes+header.contractionUCACombos, (int32_t)count, outBytes+header.contractionUCACombos, pErrorCode); } /* swap the script to lead bytes */ if(header.scriptToLeadByte!=0) { int indexCount = ds->readUInt16(*((uint16_t*)(inBytes+header.scriptToLeadByte))); // each entry = 2 * uint16 int dataCount = ds->readUInt16(*((uint16_t*)(inBytes+header.scriptToLeadByte + 2))); // each entry = uint16 ds->swapArray16(ds, inBytes+header.scriptToLeadByte, 4 + (4 * indexCount) + (2 * dataCount), outBytes+header.scriptToLeadByte, pErrorCode); } /* swap the lead byte to scripts */ if(header.leadByteToScript!=0) { int indexCount = ds->readUInt16(*((uint16_t*)(inBytes+header.leadByteToScript))); // each entry = uint16 int dataCount = ds->readUInt16(*((uint16_t*)(inBytes+header.leadByteToScript + 2))); // each entry = uint16 ds->swapArray16(ds, inBytes+header.leadByteToScript, 4 + (2 * indexCount) + (2 * dataCount), outBytes+header.leadByteToScript, pErrorCode); } } return header.size; } /* swap ICU collation data like ucadata.icu */ U_CAPI int32_t U_EXPORT2 ucol_swap(const UDataSwapper *ds, const void *inData, int32_t length, void *outData, UErrorCode *pErrorCode) { const UDataInfo *pInfo; int32_t headerSize, collationSize; /* udata_swapDataHeader checks the arguments */ headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode); if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { return 0; } /* check data format and format version */ pInfo=(const UDataInfo *)((const char *)inData+4); if(!( pInfo->dataFormat[0]==0x55 && /* dataFormat="UCol" */ pInfo->dataFormat[1]==0x43 && pInfo->dataFormat[2]==0x6f && pInfo->dataFormat[3]==0x6c && pInfo->formatVersion[0]==3 /*&& pInfo->formatVersion[1]>=0*/ )) { udata_printError(ds, "ucol_swap(): data format %02x.%02x.%02x.%02x (format version %02x.%02x) is not a collation file\n", pInfo->dataFormat[0], pInfo->dataFormat[1], pInfo->dataFormat[2], pInfo->dataFormat[3], pInfo->formatVersion[0], pInfo->formatVersion[1]); *pErrorCode=U_UNSUPPORTED_ERROR; return 0; } collationSize=ucol_swapBinary(ds, (const char *)inData+headerSize, length>=0 ? length-headerSize : -1, (char *)outData+headerSize, pErrorCode); if(U_SUCCESS(*pErrorCode)) { return headerSize+collationSize; } else { return 0; } } /* swap inverse UCA collation data (invuca.icu) */ U_CAPI int32_t U_EXPORT2 ucol_swapInverseUCA(const UDataSwapper *ds, const void *inData, int32_t length, void *outData, UErrorCode *pErrorCode) { const UDataInfo *pInfo; int32_t headerSize; const uint8_t *inBytes; uint8_t *outBytes; const InverseUCATableHeader *inHeader; InverseUCATableHeader *outHeader; InverseUCATableHeader header={ 0,0,0,0,0,{0,0,0,0},{0,0,0,0,0,0,0,0} }; /* udata_swapDataHeader checks the arguments */ headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode); if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { return 0; } /* check data format and format version */ pInfo=(const UDataInfo *)((const char *)inData+4); if(!( pInfo->dataFormat[0]==0x49 && /* dataFormat="InvC" */ pInfo->dataFormat[1]==0x6e && pInfo->dataFormat[2]==0x76 && pInfo->dataFormat[3]==0x43 && pInfo->formatVersion[0]==2 && pInfo->formatVersion[1]>=1 )) { udata_printError(ds, "ucol_swapInverseUCA(): data format %02x.%02x.%02x.%02x (format version %02x.%02x) is not an inverse UCA collation file\n", pInfo->dataFormat[0], pInfo->dataFormat[1], pInfo->dataFormat[2], pInfo->dataFormat[3], pInfo->formatVersion[0], pInfo->formatVersion[1]); *pErrorCode=U_UNSUPPORTED_ERROR; return 0; } inBytes=(const uint8_t *)inData+headerSize; outBytes=(uint8_t *)outData+headerSize; inHeader=(const InverseUCATableHeader *)inBytes; outHeader=(InverseUCATableHeader *)outBytes; /* * The inverse UCA collation binary must contain at least the InverseUCATableHeader, * starting with its size field. * sizeof(UCATableHeader)==8*4 in ICU 2.8 * check the length against the header size before reading the size field */ if(length<0) { header.byteSize=udata_readInt32(ds, inHeader->byteSize); } else if( ((length-headerSize)<(8*4) || (uint32_t)(length-headerSize)<(header.byteSize=udata_readInt32(ds, inHeader->byteSize))) ) { udata_printError(ds, "ucol_swapInverseUCA(): too few bytes (%d after header) for inverse UCA collation data\n", length); *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; return 0; } if(length>=0) { /* copy everything, takes care of data that needs no swapping */ if(inBytes!=outBytes) { uprv_memcpy(outBytes, inBytes, header.byteSize); } /* swap the necessary pieces in the order of their occurrence in the data */ /* read more of the InverseUCATableHeader (the byteSize field was read above) */ header.tableSize= ds->readUInt32(inHeader->tableSize); header.contsSize= ds->readUInt32(inHeader->contsSize); header.table= ds->readUInt32(inHeader->table); header.conts= ds->readUInt32(inHeader->conts); /* swap the 32-bit integers in the header */ ds->swapArray32(ds, inHeader, 5*4, outHeader, pErrorCode); /* swap the inverse table; tableSize counts uint32_t[3] rows */ ds->swapArray32(ds, inBytes+header.table, header.tableSize*3*4, outBytes+header.table, pErrorCode); /* swap the continuation table; contsSize counts UChars */ ds->swapArray16(ds, inBytes+header.conts, header.contsSize*U_SIZEOF_UCHAR, outBytes+header.conts, pErrorCode); } return headerSize+header.byteSize; } #endif /* #if !UCONFIG_NO_COLLATION */